UDPIP-10G/25G
1G UDP/IP Hardware Protocol Stack Core

Implements a UDP/IP hardware protocol stack that enables high-speed communication over a LAN or a point-to-point connection. Designed for standalone operation, the core is ideal for offloading the host processor from the demanding task of UDP/IP encapsulation and enables media streaming even in processor-less SoC designs.

Trouble-free network operation is ensured through run-time programmability of all the required network-parameters (local, destination and gateway IP addresses; UDP ports; and MAC address). The core implements the Address Resolution Protocol (ARP), which is critical for multiple access networks, and the Echo Request and Reply Messages (“ping”) of the Internet Control Message Protocol (ICMP) widely used to test network connectivity. It can use a static IP address or automatically request and acquire an IP address from a Dynamic Host Configuration Server (DHCP) server. Furthermore, the core support 801.1Q tagging, and is suitable for operation in Virtual LAN.

The core is easy to integrate into systems with or without a host processor. Packet data can be read/written to the core via dedicated AMBA® AXI4-stream or Avalon®-ST interfaces, while registers are accessible via an AXI4-Lite, or AHB or Avalon-MM slave interface. Bridges to other interface protocols can be made available up on request. The core is Ethernet MAC-independent, but can be made available pre-integrated with a CAST, or other third-party eMAC core.

Applications

Video, image and audio streaming or broadcasting over Ethernet, in devices such as IP cameras compatible to the GigE Vision, ONVIF, or PSIA standards, VOIP and smart phones. Also, high-frequency trading systems, high-speed communication between LAN nodes, device monitoring and control over IP networks.

Block Diagram
Functional Description

The UDPIP-10G/25G core receives, and transmits UDP packet data, and forwards other traffic from the Ethernet MAC to the application and vice versa. It also receives and transmits ARP requests and responses, and responds to ICMP echo reply messages. The core generates and validates the UDP and IP checksums of outgoing and incoming packets, respectively. It can be programmed to discard or forward corrupted packets to the user application.

The core consists of the following modules:

The Ethernet Frame Decoder receives Ethernet frames from an external Ethernet MAC, detects the frame type and sends frames to the ARP or the IP packet decoder.

The Ethernet Frame Transmitter provides the external Ethernet MAC interface. The transmitter also multiplexes ARP and IP transmit packets from the core subsystems.

The VLAN Receiver receives Ethernet frames from an external Ethernet MAC, detects and compares VLAN tag and filters frames with correct VLAN tag when enabled.

The VLAN Transmitter receives Ethernet frames from the Ethernet Frame Transmitter and adds VLAN Tag to the frames when enabled.

The Packet Receiver Module receives IP packets and handles them according to the packet type. The Packet Decoder receives IP packets and the decoded packets are stored in the Rx Packet Buffer and then passed to the user application. The Received Packet Buffer implements separate data storage for the UDP application data and other data, and its size is configurable at synthesis time.

The Packet Transmit Module assembles UDP and ICMP packets. The UDP application data, as well as the ICMP packet data, are stored in the transmit buffer, the size of which is configurable at synthesis time.

The ARP Module sends and receives ARP packets and handles the packets according to command in the packet. The DHCP Module automatically requests and acquires an IP address from a DCHP server.

The UDP Channel Demultiplexer – receives UDP packets and demultiplexes them according to a decoded UDP channel number.

The UDP Channel Multiplexer – receives UDP packet channels from a user application and multiplexes them to the Packet Transmitter module.

Finally, the Control and Status Registers controls the core functionality and reports the core status.

Implementation Results

UDPIP-10G/25G reference designs have been evaluated in a variety of technologies. The following sample implementation figures are indicative of the core capabilities and their corresponding utilization metrics. The sample results do not represent the higher speed or smaller area for the core. Please contact CAST to get accurate characterization for your target configuration and FPGA device.

<table>
<thead>
<tr>
<th>Family / Device</th>
<th>Logic Resources</th>
<th>Memory Resources</th>
<th>Freq. (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolarFire MPF300T-STD</td>
<td>6,841 4LUT</td>
<td>3 uSRAM, 27 LSRAM</td>
<td>190</td>
</tr>
</tbody>
</table>

Table 1: UDPIP-10G sample results for the core configured with 4 Rx channel, 4 Tx channel, 16kB Rx buffers, 8kB Tx buffers, ARP, ICMP, IGMP, without DHCP and VLAN support

Support

The core as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Deliverables

The core is available in synthesizable RTL and FPGA netlist forms, and includes everything required for successful implementation, including a sophisticated self-checking testbench, simulation scripts, test vectors, and expected results, synthesis scripts and comprehensive documentation.