MD5
Message Digest Algorithm Processor

The MD5 encryption IP core is a fully compliant hardware implementation of the Message Digest Algorithm MD5, suitable for a variety of applications. It computes a 120-bit message digest for messages of up to \(2^{64}-1\) bits.

The MD5 algorithm is an improved version of the MD4, created by Professor Ronald L. Rivest of MIT, and is closely modeled after that algorithm. It operates on message blocks of 512 bits for which a 128-bit (4 x 32-bit words) digest is produced. Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to form the message of the whole message.

The MD5 core is a fully synchronous design and has been evaluated in a variety of technologies. It is available optimized for ASICs or FPGAs. The MD5 core has been robustly verified and is silicon-proven.

Applications

The MD5 can be utilized for a variety of encryption applications including:

- Electronic funds transfer
- Authenticated electronic data transfers
- Encrypted data storage

Block Diagram

![Block Diagram of MD5 Core](image)

Functional Description

The process starts with the first message block of sixteen words being clocked into the core. The INIT signal is asserted at the start of each message. The MD5 core is ready to accept data when REQ is asserted.

Each 32-bit word is clocked into the core on the rising edge of CLK when ACK is asserted. After a block of 16 words has been input, REQ is deasserted as the MD5 core computes the message digest. After another 49 clock cycles, the message digest for that 16 word block is computed and REQ is asserted again to indicate that more words can be clocked in.

The standard specifies that the maximum number of bits in the message is \(2^{64}-1\). Therefore the maximum number of 32-bit words that can be clocked in is \(2^{59}-1\). The core can cope with any number of words up to \(2^{59}-1\) being input.

The LAST signal is asserted when clocking in the last word. At least one pad, and two length words need to be added to the end of the message as part of the MD5 calculation.
Functional Description cont.

Note that the BYTE signal is considered valid and sampled by the core when the LAST signal is high. This signal is used by the core to determine how many bytes in the last word are part of the input data.

If the total number of input words plus three is not a multiple of 16, the core adds additional pad bytes to calculate the message digest as specified in the standard.

The two Length words that contain the bit length of the original message are also added by the core.

The 160-bit message digest is output on A, B, C, D when READY is asserted.

Implementation Results

The MD5 can be mapped to any Intel FPGA device (provided sufficient silicon resources are available). The following are sample Intel results, with all core I/Os assumed to be routed on-chip.

<table>
<thead>
<tr>
<th>Family</th>
<th>Logic</th>
<th>RAM bits</th>
<th>Freq. (MHz)</th>
<th>Throughput (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX 10 (-7)</td>
<td>1,751 LEs</td>
<td>0</td>
<td>75</td>
<td>591</td>
</tr>
<tr>
<td>Arria 10 GX (-1)</td>
<td>719 ALMs</td>
<td>0</td>
<td>125</td>
<td>895</td>
</tr>
<tr>
<td>Stratix V (-3)</td>
<td>691 ALMs</td>
<td>0</td>
<td>200</td>
<td>1,575</td>
</tr>
<tr>
<td>Stratix V (-1)</td>
<td>689 ALMs</td>
<td>0</td>
<td>225</td>
<td>1,772</td>
</tr>
</tbody>
</table>

The provided figures do not represent the higher speed or smaller area for the core. Please contact CAST to get characterization data for your target configuration and technology.

Export Permits

This core implements encryption functions and as such it is subject to export control regulations. Export to your country may or may not require a special export license. Please contact CAST to determine what applies in your specific case.

Support

The core as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Verification

The core has been verified through extensive synthesis, place and route and simulation runs. It has also been embedded in several products, and is proven in FPGA technologies.

Deliverables

The core is available in ASIC (RTL) or FPGA (netlist) forms, and includes everything required for successful implementation. The Intel version includes:

- Targeted FPGA netlist
- Sophisticated HDL Testbench (self checking)
- C Model & test vector generator
- Simulation script, vectors & expected results
- Synthesis script
- User documentation