PCI Express Core Integration with the OCP Bus

Tony Sousek, Principal Engineer
Nick Sgoupis, Senior Principal Engineer
CAST, Inc.
Overview

- PCIe core integration challenges
 - Understanding of spec
 - Transaction Layer Packet Details

- Possible approaches
 - Through examples
 - Through a proprietary interface
 - Through an Application Interface and standard bus

- Implementing an AIF for OCP
 - Hiding PCIe and OCP details
 - Delivering a complete solution
PCIe Design Layers

- PCIe is a high-speed serial bus
- Layered architecture
- Application Data transferred via packets
- PCIe IP cores usually implement the lower three layers
- PCIe IP cores solve most of the protocol handling
 - connection establishing
 - link control
 - flow control
 - power management
 - error detection and reporting
- Endpoint Controller core handles internal PCIe details
- But typical core stops at the Transaction Layer Packet (TLP) interface
- Designer still required to understand PCIe details for TLP
 - correct packet decoding
 - correct packet forming
- Can impact many elements in application system
Incoming Requests

- Incoming requests perform local subsystem read or write
- Some incoming requests require sending completion TLP
- Completion TLP rules
 - Must form completion packets with respect to Max_Payload and Read Completion Boundary
 - Must correctly encode fields in completion TLP
 - Completion address in packet differs (I/O x Memory)
- Application must correctly report a request processing problem to the core
Outgoing Requests

- Outgoing Requests are generated by the application
- There is a set of rules for forming outgoing request TLP
 - Must be identified by unique Tag
 - Read requests restricted by Max_Read_Request_Size
 - Write requests restricted by Max_Payload
 - Must not cross 4kB address boundary
- Violations will result in request being discarded and error detected at receiver
- Completion request processing
 - Completions for multiple outstanding requests must be processed by Tag
 - Must have correct values in lower addresses to process multiple TLPs
 - Must process both Unsupported Request and Completer Abort responses
User Application Architecture
Possible Approaches

- PCIe IP core providers are aware of the design challenges
- Guiding by Design Examples
- Application interface module with a proprietary backend interface
- Application interface with a standard SoC bus interface
Guiding by Examples

Requirements
- Deliverables should follow QIP Metric for quality & completeness, with extensive design examples illustrating TLP

Designer duties
- Understand PCIe specification
- Implement interface and functional logic for incoming request processing
- Implement a module for outgoing request generation and processing
- Handle verification including PCIe compliance testing

This approach
- Can result in highly optimized small design
- Requires more time for design and verification
Proprietary Application Interface

Features
- Custom completion controller for processing incoming requests
- DMA channels to generate and process outgoing requests
- Proprietary backend interface
- Verification of PCIe protocol guaranteed by IP provider

Designer Duties
- Designer must learn new backend interface
- Adopt application subsystems to interface with the proprietary interface

This approach
- Isolates designer from PCIe complexities
- Subsystems not reusable in any other design unless modified
Similar to previous approach, but with industry-standard bus backend

Using SoC bus interface offers significant advantages:
- Already familiar to designer
- Simple system architecture
- Simple reuse of a previously designed components
- SoC bus verification models available
- The bridge fully verified by IP core provider
OCP Bus

- Well-defined SoC bus
- Point-to-Point connections with unique On-Chip Bus architecture
- Flexible extensions to the basic signal set
- SystemC models available for free
Implementing the AIF for OCP

- AIF bridges TLP interface and OCP bus
- Completion Controller with queued request processing
- DMA core with up to eight channels
- OCP-PCIe Bridge Controller
- Optional Message Controller
Verification & Reference Design

- Rigorously verified with Denali
 - PureSpec PCIe models
 - PureSuite compliance testsuite
- Implemented in reference design (Wishbone version)
- About to undergo PCI-SIG certification testing
- Live demo in DATE booth

Compliance Testing
Positive results satisfy PCI-SIG certification requirements
Conclusions

- Integration challenges: designer must understand PCIe to deal with TLP interface
- Of possible approaches, Application Interface (AIF) to standard bus is best
- AIF with OCP offers several advantages
- Implementation and certification underway