UDPIP-1G/10G
UDP/IP Hardware Protocol Stack Core

 Implements a UDP/IP hardware protocol stack that enables high-speed communication over a LAN or a point-to-point connection. Designed for standalone operation, the core is ideal for offloading the host processor from the demanding task of UDP/IP encapsulation and enables media streaming even in processor-less SoC designs.

Trouble-free network operation is ensured through run-time programmability of all the required network-parameters (local, destination and gateway IP addresses; UDP ports; and MAC address). The core implements the Address Resolution Protocol (ARP), which is critical for multiple access networks, and the Echo Request and Reply Messages ("ping") of the Internet Control Message Protocol (ICMP) widely used to test network connectivity. It can use a static IP address or automatically request and acquire an IP address from a Dynamic Host Configuration Server (DHCP) server. Furthermore the core supports 801.1Q tagging, and is suitable for operation in a Virtual LAN.

The core is easy to integrate in systems with or without a host processor. Packet data can be read/written to the core via dedicated AMBA® AXI4-stream or Avalon®-ST interfaces, while registers are accessible via an AXI4-Lite, or AHB or Avalon-MM slave interface. Bridges to other interface protocols can be made available up on request. The core is Ethernet MAC-independent, but can be made available pre-integrated with an Altera, or other third-party eMAC core.

Applications
- Video, image and audio streaming or broadcasting over Ethernet, in devices such as IP cameras compatible to the GigE Vision, ONVIF, or PSIA standards, VOIP and smart phones. Also, high-frequency trading systems, high-speed communication between LAN nodes, device monitoring and control over IP networks.

Block Diagram

Features

Complete UDP/IP Hardware Stack
- 10/100/1000 and 10G Ethernet
- IPv4 support without packet fragmentation
- Jumbo and Super Jumbo Frames
- Transmit and Receive
- ARP with Cache
- ICMP (Ping Reply)
- IGMP v3 (Multicast)
- UDP/IP Unicast and Multicast
- UDP Port Filtering
- UDP/IP Checksums generation and validation, and optional Ethernet CRC validation
- VLAN (IEEE 802.1Q) support
- Up to four UDP channels
- Ethernet Framing processing for non-UDP user-provided packets
- Optional DHCP client

Trouble-Free Operation
- Run time programmable network parameters
 - Local, Destination and Gateway IP address
 - Source and destination UDP ports
 - MAC address
- ARP support for operation in networks with Dynamic IP allocation

Easy SoC Integration
- 32- or 64-bit streaming capable using Avalon-ST or AXI4-Stream
- Control/Status interface
- Separate clock domains for packet processing and control/data interfaces
- Configurable buffer sizes
- Rich interrupt support for system events
- Optionally available pre-integrated with:
 - Altera, or other third-party 1G and 10G eMAC cores
 - CAST Image and Video compression cores
Deliverables

The UDPIP1G/10G core receives, and transmits UDP packet data, and forwards other traffic from the Ethernet MAC to the application and vice versa. It also receives and transmits ARP requests and responses, and responds to ICMP echo replies messages. The core generates and validates the UDP and IP checksums of outgoing and incoming packets, respectively. The core can be programmed to discard or forward corrupted packets to the user application.

The core consists of the following modules:

The Ethernet Frame Decoder receives Ethernet frames from an external Ethernet MAC, detects the frame type and sends frames to the ARP or the IP packet decoder.

The Ethernet Frame Transmitter provides the external Ethernet MAC interface. The transmitter also multiplexes ARP and IP transmit packets from the core subsystems.

The VLAN Receiver – receives Ethernet frames from an external Ethernet MAC, detects and compares VLAN tag and filters frames with correct VLAN tag when enabled.

The VLAN Transmitter – receives Ethernet frames from the Ethernet Frame Transmitter and adds VLAN Tag to the frames when enabled.

The Packet Receiver Module receives IP packets and handles them according to the packet type. The Packet Decoder receives IP packets and the decoded packets are stored in the Rx Packet Buffer and then passed to the user application. The Received Packet Buffer implements separate data storage for the UDP application data and other data, and its size is configurable at synthesis time.

The Packet Transmit Module assembles UDP and ICMP packets. The UDP application data as well as the ICMP packet data are stored in the transmit buffer, the size of which is configurable at synthesis time.

The ARP Module sends and receives ARP packets and handles the packets according to command in the packet. The DHCP Module automatically requests and acquires an IP address from a DCHP server.

The UDP Channel Demultiplexer receives UDP packets and demultiplexes them according to a decoded UDP channel number.

The UDP Channel Multiplexer receives UDP packet channels from a user application and multiplexes them to the Packet Transmitter module.

Finally, the Control and Status Registers controls the core functionality and reports the core status.

Functional Description

Related Cores

Get SoC development and performance benefits by combining this UDP/IP Stack Core with any of these additional CAST cores:

- EMAC-1G: Gigabit Ethernet Media Access Controller Core
- H2642RTP: Hardware RTP stack for H.264
- Image and Video Compression IP cores: H.264, JPEG, and more.

Support

The core as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Implementation Results

UDPIP-1G/10G reference designs have been evaluated in a variety of technologies. The following sample implementation figures are indicative of the core capabilities and their corresponding utilization metrics. The sample results do not represent the higher speed or smaller area for the core.

Table 1: UDPIP-1G/10G Sample Results for the core configured with a 32bit data-path (suitable for 1Gbps), ARP, ICMP, IGMP, Rx and Tx

<table>
<thead>
<tr>
<th>Family</th>
<th>UDP Channels</th>
<th>ALMs</th>
<th>Fmax (MHz)</th>
<th>Memory Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arria-V</td>
<td>1</td>
<td>2,456</td>
<td>136</td>
<td>100,352</td>
</tr>
<tr>
<td>5AGXMB1G6F40C6</td>
<td>4</td>
<td>3,187</td>
<td>134</td>
<td>172,032</td>
</tr>
<tr>
<td>Cyclone-V</td>
<td>1</td>
<td>2,490</td>
<td>137</td>
<td>100,352</td>
</tr>
<tr>
<td>5CGXF9E6F35C7</td>
<td>4</td>
<td>2,245</td>
<td>129</td>
<td>172,032</td>
</tr>
<tr>
<td>Stratix-V</td>
<td>1</td>
<td>2,380</td>
<td>219</td>
<td>100,352</td>
</tr>
<tr>
<td>5SEE9H40C4</td>
<td>4</td>
<td>3,091</td>
<td>241</td>
<td>172,032</td>
</tr>
</tbody>
</table>

Table 2: UDPIP-1G/10G Sample Results for the core configured with a 64bit data-path (suitable for 10Gbps), ARP, ICMP, IGMP, Rx and Tx

<table>
<thead>
<tr>
<th>Family</th>
<th>UDP Channels</th>
<th>ALMs</th>
<th>Fmax (MHz)</th>
<th>Memory Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arria-V</td>
<td>1</td>
<td>3,157</td>
<td>136</td>
<td>100,352</td>
</tr>
<tr>
<td>5AGXMB1G6F40C6</td>
<td>4</td>
<td>3,975</td>
<td>128</td>
<td>172,032</td>
</tr>
<tr>
<td>Cyclone-V</td>
<td>1</td>
<td>3,131</td>
<td>126</td>
<td>100,352</td>
</tr>
<tr>
<td>5CGXF9E6F35C7</td>
<td>4</td>
<td>3,999</td>
<td>125</td>
<td>172,032</td>
</tr>
<tr>
<td>Stratix-V</td>
<td>1</td>
<td>3,060</td>
<td>209</td>
<td>100,352</td>
</tr>
<tr>
<td>5SEE9H40C4</td>
<td>4</td>
<td>3,900</td>
<td>207</td>
<td>172,032</td>
</tr>
</tbody>
</table>

Copyright © CAST, Inc. 2017, All Rights Reserved. Contents subject to change without notice. Trademarks are the property of their respective owners.