The Serial Peripheral Interface (SPI) allows high-speed synchronous serial data transfers between microprocessors, microcontrollers and peripheral devices. The SPI_MS megafunction implements the Serial Peripheral Interface, which can operate either as a master or as a slave.

When operating in master mode, the megafunction generates the serial data clock (SCK) and selects the slave device, which will be addressed. The master is able to generate single-byte or multi-byte frames. The internal data path of the megafunction is configurable to 8, 16 or 32-bit width. When using a wider that 8-bit data-path, the megafunction is able to generate partial word transfers, by generating frames with less bytes than the data path width. In this manner the megafunction can transmit a data stream with length that is not a multiple of the data-path width.

When operating in slave mode, another master device generates the serial data clock and activates the slave select input of the megafunction, in order to communicate. The slave is able to split the received data in partial words, in the case that a smaller than the data-path width frame is received. The slave incorporates mechanisms to reject input noise from the SPI bus, achieving a reliable data reception. Transmitted data are also accurately synchronized with the Serial Clock of the SPI bus.

The megafunction was carefully designed to provide the most reliable communication possible, and to achieve very high bit rates.

Block Diagram
Functional Description

The SPI slave was carefully designed to provide the most reliable communication possible. In order to avoid erroneous triggering of the internal shift register caused from noise or glitches on the serial data clock (SCK) line, the SCK line is sampled and synchronized with the system clock. Special design techniques were used to obtain a reception mechanism immune against metastability errors, which would cause reception faults. Thus the reception mechanism of the SPI slave can operate reliably with a serial data clock frequency up to 1/4 of the system clock. This permits higher transfer rates when the megafunction is used with a low frequency system clock.

The megafunction was also designed to achieve very high bit rates. 22 Mbit/s were achieved in lab tests with the megafunction implemented in an FPGA device and off-chip connection between master and slave. Higher bit rates are possible with faster devices and careful PCB design.

The megafunction includes two configurable size FIFOs, one for receiving and one for transmitting. These help achieving high throughput data transfers with less host microprocessor interaction. An interrupt generation mechanism is included in the megafunction, to provide an effective interface with a host microprocessor.

Another feature incorporated in the megafunction is the support for eight Slave Select lines used to access up to eight devices when working as a master, as well as eight Chip Select lines.

The design is fully synchronous and has one clock domain, the system clock. This leads to a more reliable and trouble-free synthesis and implementation of the megafunction.

Implementation Results

SPI_MS reference designs have been evaluated in a variety of technologies. The following are sample Altera results with the megafunction configured for 16-bit data path and 2 FIFOs (RX/TX) of 64x18 bits.

<table>
<thead>
<tr>
<th>Altera Device</th>
<th>LEs/ALUTs</th>
<th>Memory</th>
<th>Speed (fmax, MHz)</th>
<th>Quartus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone EP1C2-6</td>
<td>520</td>
<td>2 M4Ks</td>
<td>67</td>
<td>190</td>
</tr>
<tr>
<td>Cyclone-II EP2C35-6</td>
<td>549</td>
<td>2 M4Ks</td>
<td>67</td>
<td>200</td>
</tr>
<tr>
<td>Cyclone-III EP3C40-6</td>
<td>565</td>
<td>2 M9Ks</td>
<td>67</td>
<td>208</td>
</tr>
<tr>
<td>Stratix EP1S20-5</td>
<td>526</td>
<td>2 M4Ks</td>
<td>67</td>
<td>195</td>
</tr>
<tr>
<td>Stratix-II EP2S60-3</td>
<td>467</td>
<td>2 M4Ks</td>
<td>67</td>
<td>260</td>
</tr>
<tr>
<td>Stratix-III EP3SE50-2</td>
<td>468</td>
<td>2 M9Ks</td>
<td>67</td>
<td>265</td>
</tr>
</tbody>
</table>

Support

The megafunction as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Verification

The megafunction has been verified through extensive simulation and rigorous code coverage measurements. It has also been successfully implemented in commercial and prototype systems.

Deliverables

The megafunction includes everything required for successful implementation:

- Post-synthesis EDIF netlist (firm megafunction) optimized for a specific Altera device (HDL RTL source code (soft megafunction) is also available)
- Sophisticated self-checking Testbench (Verilog versions use Verilog 2001)
- Simulation script, vectors, and expected results
- Synthesis (soft) or place and route (firm) script
- Comprehensive user documentation, including detailed specifications and a system integration guide