The LJPEG-D core implements a Lossless JPEG (LJPEG) decoder in a compact, high-performance, stand-alone package ideal for applications where bit-by-bit accurate reproduction of an image is essential.

The LJPEG-D decodes images that conform to the spatial (sequential) lossless encoding mode (SOF3) of the ISO/IEC 10918-1 standard (CCITT T.81 recommendation). Rather than the Discrete Cosine Transform (DCT) functions used for lossy JPEG compression - which can introduce round-off errors - the lossless part of the standard employs a reversible predictor function. The LJPEG-D core can thus decode images with no information loss, and requires a smaller physical implementation than what necessary for lossy JPEG image decoding.

Evaluation designs show that the core requires just 36K gates in an ASIC and that it fits in a variety of low-cost FPGA devices. Its heavily optimized architecture also enables very high performance, reaching 500 MSamples/sec on 0.09µ process (under typical process and operating conditions).

The LJPEG-D is a fully synchronous, strictly positive-edge design with no internal three-state buffers. Comprehensive documentation and a complete verification environment - including a bit-accurate model - help designers integrate and verify the core.

Applications

The LJPEG-D provides a fast, economical solution whenever lossless image compression is essential, including applications such as:

- Medical, military, and space imaging.
- Professional, studio-quality cameras and editing suites.
- High-end film and photo scanners.
- Industrial machine vision systems.

Limitations with respect to the ISO/IEC 10918-1 standard:

- Up to three image-components are supported (Nf field of the SOF3 marker segment = 1 or 2 or 3).
- Single scan encoding (only one SOS marker segment, with Ns field = Nf).
- No DNL marker support (Y field of the SOF3 marker segment > 0).
- Fixed parameters
 - No sub-sampling (Hi and Vi fields of the SOF3 marker segment = 1).
 - Prediction function is fixed to the left-hand predictor, predictor 1. (Ss field of SOS marker segment = 1).
Functional Description

Lossless JPEG was added to the ITU-T JPEG recommendations in 1995. The JPEG lossless mode of operation does not use the 2D-DCT that is used in the lossy mode, since round-off errors prevent a 2D-DCT calculation from being reversible. For the same reason, one would not normally use color space conversion or down-sampling, although these are permitted by the standard.

The lossless mode of the standard codes the difference between each pixel and the “predicted” value for the pixel. The predicted value is a function of the already-transmitted pixels just above and to the left of the current one (8 different predictor functions are defined in the standard). The sequence of the calculated differences (prediction errors) is encoded using the same back end (Huffman or arithmetic) used in the lossy mode of the standard.

The LJJPEG-D core receives an ISO/IEC 10918-1 compatible lossless JPEG stream via the JPEG-In Interface. The core is capable of decoding compressed images with up to three components, having 2-16 bits precision per component sample, previously encoded using the predictor 1 function and the Huffman coding back end.

While the LJJPEG-D core reads the JPEG stream, it parses the marker segments and programs itself accordingly. The programmable parameters the core can extract from the stream include the image dimensions, the Huffman coding tables, the restart interval if any, and the point transform function. During the parsing phase of the JPEG markers, the core enables a header error catch-up function so that corrupted streams can be detected. After parsing the marker segments, the core decompresses the entropy coded segment of the lossless JPEG stream, and outputs image samples via the pixel-out interface.

Implementation Results

LJPEG-D core has been evaluated in a variety of technologies. The following are sample pre-layout ASIC results (as reported by synthesis tool and silicon vendor design kit) under typical process and operating conditions, with all core I/Os assumed to be routed on-chip, logical area excluding memory, and with equivalent gates count calculation using the smallest NAND2 gate available in the technology.

<table>
<thead>
<tr>
<th>ASIC Technology</th>
<th>Fmax (MHz)</th>
<th>Logic Area (um²)</th>
<th>Number of eq. gates</th>
<th>Memory (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSMC 0.18µ process</td>
<td>200</td>
<td>~387K</td>
<td>39K</td>
<td>1,664</td>
</tr>
<tr>
<td>TSMC 0.09µ process</td>
<td>500</td>
<td>~102K</td>
<td>38K</td>
<td>1,664</td>
</tr>
</tbody>
</table>

Support

The LJJPEG-D core as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Verification

The LJJPEG-D core has been verified through extensive simulation using a large set of test vectors and reference results.

Deliverables

The LJJPEG-D is available as a soft core (synthesizable HDL) for ASIC technologies and as a firm core (netlist) for FPGA technologies, and includes everything required for successful implementation. The ASIC version includes:

- HDL RTL source code.
- Synthesis scripts.
- Simulation scripts.
- Sophisticated self-checking Testbench (Verilog versions use Verilog 2001) including test vectors, expected results, and verification engine.
- A bit-accurate model (BAM) including custom vector generation support, and a software library of the bit accurate model functions.
- Comprehensive user documentation, including detailed specifications and a system integration guide.