The LJPEG-D megafunction implements a Lossless JPEG (LJPEG) decoder in a compact, high-performance, stand-alone package ideal for applications where bit-by-bit accurate reproduction of an image is essential.

The LJPEG-D decodes images that conform to the spatial (sequential) lossless encoding mode (SOF3) of the ISO/IEC 10918-1 standard (CCITT T.81 recommendation). Rather than the Discrete Cosine Transform (DCT) functions used for lossy JPEG compression - which can introduce round-off errors - the lossless part of the standard employs a reversible predictor function. The LJPEG-D megafunction can thus decode images with no information loss, and requires a smaller physical implementation than what necessary for lossy JPEG image decoding.

Evaluation designs show that the LJPEG-D megafunction fits in a variety of Altera devices, requiring, for example, about 5,200 LEs for Cyclone II and about 4,400 ALUTs for a Stratix II implementation. Its optimized architecture also enables high performance, reaching up to 95 MSamples/sec with Stratix III devices.

The LJPEG-D is a fully synchronous, strictly positive-edge design with no internal three-state buffers. Comprehensive documentation and a complete verification environment - including a bit-accurate model - help designers integrate and verify the megafunction.

Applications

The LJPEG-D provides a fast, economical solution whenever lossless image compression is essential, including applications such as:

- Medical, military, and space imaging.
- Professional, studio-quality cameras and editing suites.
- High-end film and photo scanners.
- Industrial machine vision systems.

Limitations with respect to the ISO/IEC 10918-1 standard:

- Up to three image-components are supported (N fields of the SOF3 marker segment = 1 or 2 or 3).
- Single scan encoding (only one SOS marker segment, with Ns field = Nf).
- No DNL marker support (Y field of the SOF3 marker segment > 0).
- Fixed parameters
 - No sub-sampling (Hi and Vi fields of the SOF3 marker segment = 1).
 - Prediction function is fixed to the left-hand predictor, predictor 1. (Ss field of SOS marker segment = 1).
Functional Description

Lossless JPEG was added to the ITU-T JPEG recommendations in 1995. The JPEG lossless mode of operation does not use the 2D-DCT that is used in the lossy mode, since round-off errors prevent a 2D-DCT calculation from being reversible. For the same reason, one would not normally use color space conversion or down-sampling, although these are permitted by the standard.

The lossless mode of the standard codes the difference between each pixel and the "predicted" value for the pixel. The predicted value is a function of the already-transmitted pixels just above and to the left of the current one (8 different predictor functions are defined in the standard). The sequence of the calculated differences (prediction errors) is encoded using the same back end (Huffman or arithmetic) used in the lossy mode of the standard.

The LJPEG-D megafunction receives an ISO/IEC 10918-1 compatible lossless JPEG stream via the JPEG-In Interface. The megafunction is capable of decoding compressed images with up to three components, having 2-16 bits precision per component sample, previously encoded using the predictor 1 function and the Huffman coding back end.

While the LJPEG-D megafunction reads the JPEG stream, it parses the marker segments and programs itself accordingly. The programmable parameters the megafunction can extract from the stream include the image dimensions, the Huffman coding tables, the restart interval if any, and the point transform function. During the parsing phase of the JPEG markers, the megafuction enables a header error catch-up function so that corrupted streams can be detected. After parsing the marker segments, the megafunction decompresses the entropy coded segment of the lossless JPEG stream, and outputs image samples via the pixel-out interface.

Implementation Results

LJPEG-D megafunction has been evaluated in a variety of technologies. The following are sample Altera results using balanced area/speed constraints during synthesis and place and route, while assuming that all megafunction I/Os are routed off-chip.

<table>
<thead>
<tr>
<th>Family Device</th>
<th>Logic</th>
<th>Fmax (MHz)</th>
<th>Special Features</th>
<th>Design Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone EP1C20-C6</td>
<td>5,931 LEs</td>
<td>45</td>
<td>2 M4Ks</td>
<td>Quartus 7.1</td>
</tr>
<tr>
<td>Cyclone II EP2C20-C6</td>
<td>5,176 LEs</td>
<td>50</td>
<td>2 M4Ks</td>
<td>Quartus 7.1</td>
</tr>
<tr>
<td>Cyclone III EP3C16-C6</td>
<td>5,114 LEs</td>
<td>50</td>
<td>2 M9Ks</td>
<td>Quartus 7.1</td>
</tr>
<tr>
<td>Stratix EP1S10-C5</td>
<td>5,931 LEs</td>
<td>50</td>
<td>2 M4Ks</td>
<td>Quartus 7.1</td>
</tr>
<tr>
<td>Stratix II EP2S15-C3</td>
<td>4,415 ALUTs</td>
<td>75</td>
<td>2 M4Ks</td>
<td>Quartus 7.1</td>
</tr>
<tr>
<td>Stratix III EP3SE50-C2</td>
<td>4,337 ALUTs</td>
<td>95</td>
<td>2 M9Ks</td>
<td>Quartus 7.1</td>
</tr>
</tbody>
</table>

Support

The LJPEG-D megafunction as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Verification

The LJPEG-D megafunction has been verified through extensive simulation using a large set of test vectors and reference results.

Deliverables

The LJPEG-D is available as a soft megafunction (synthesizable HDL) for ASIC technologies and as a firm megafunction (netlist) for FPGA technologies, and includes everything required for successful implementation. The Altera version includes:

- Post-synthesis VQM or EDIF netlist.
- Place and route scripts.
- Simulation scripts.
- Sophisticated self-checking Testbench (Verilog versions use Verilog 2001) including test vectors, expected results, and verification engine.
- A bit-accurate model (BAM) including custom vector generation support, and a software library of the bit accurate model functions.
- Comprehensive user documentation, including detailed specifications and a system integration guide.