The JPEG-D core is a standalone and high-performance JPEG decoder for still image and video decompression applications.

One of the fastest available JPEG decoders, the JPEG-D can decode at Full HD (1080p30) or higher rates, even in low-cost LatticeECP2 devices. Full compliance with the Baseline Sequential DCT mode of the ISO/IEC 10918-1 JPEG standard makes the JPEG-D core ideal for interoperable systems and devices. In addition to decoding standard Baseline JPEG streams, the core is also capable of decompressing the video payload of many (de facto) standard motion JPEG container formats.

Evaluation designs show that the core fits in a variety of Lattice devices, requiring, for example, approximately 4,500 slices for a LatticeXP2 implementation. Its heavily optimized architecture enables a very high performance, reaching processing rates of up to 136 MSamples/sec in a LatticeSC device.

The core is designed with easy to use, fully controllable and FIFO-like, streaming input and output interfaces. Being carefully designed, rigorously verified and silicon-proven, the JPEG-D is a reliable and easy to integrate core. Its deliverables include a complete verification environment and a bit-accurate software model.

Applications

The JPEG-D core is suitable for implementing a variety of digital imaging applications, including:

- Home entertainment devices (set-top boxes, network media players etc)
- Portable multimedia devices (media players, mobile phones etc)
- Digital printing devices
- Medical imaging systems
- Video conference systems
- Surveillance systems

Block Diagram
Functional Description

The JPEG-D is fully self-configured by parsing the marker segments that are present in the input Baseline JPEG stream. The core checks also the input JPEG marker segments against errors and signals in case it detects any. The decoded image parameters are made available for controlling peripherals such as a block-to-raster scan converter.

Following the parsing of the marker segments, the JPEG-D decodes the entropy coded data segment(s) and outputs the decoded image samples in their native MCU block scan order.

Designed for continuous data flow, the JPEG-D can address the most demanding image and video decompression applications.

Implementation Results

JPEG-D reference designs have been evaluated in a variety of technologies. The following are sample Lattice results are obtained after speed optimization during synthesis and place and route, while assuming that all core I/Os are routed off-chip.

<table>
<thead>
<tr>
<th>Device</th>
<th>Slices</th>
<th>EBR</th>
<th>Other</th>
<th>I/Os</th>
<th>Fmax (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECP2LFE2-12E-7</td>
<td>2733</td>
<td>6</td>
<td>9 MULT18X18</td>
<td>61</td>
<td>115</td>
</tr>
<tr>
<td>XP2LFXP2-17E-7</td>
<td>2706</td>
<td>6</td>
<td>9 MULT18X18</td>
<td>61</td>
<td>95</td>
</tr>
<tr>
<td>SC LFSC3GA15E-7</td>
<td>4029</td>
<td>6</td>
<td>-</td>
<td>61</td>
<td>155</td>
</tr>
</tbody>
</table>

Support

The core as delivered is warranted against defects for ninety days from purchase. Thirty days of phone and email technical support are included, starting with the first interaction. Additional maintenance and support options are available.

Verification

The core has been verified through extensive synthesis, place and route and simulation runs. It has also been embedded in several products, and is proven in both ASIC and FPGA technologies.

Deliverables

The core is available in ASIC (synthesizable HDL) and FPGA (netlist) forms, and includes everything required for successful implementation. The Lattice version includes:

- Post-synthesis EDIF netlist
- Sophisticated self-checking Testbench (Verilog versions use Verilog 2001)
- Software (C++) Bit-Accurate Model and test vector generator
- Simulation scripts, test vectors and expected results
- Place and route scripts
- Comprehensive user documentation, including detailed specifications and a system integration guide

Related Megafunctions

- CMMI-JPEG Multimedia Interface – adds an AHB interface to the JPEG-D core