Digital IP Cores
and Subsystems

Our family of microcontroller and microprocessor related cores includes capable and competitive 32-bit BA22s and the best-available set of proven 8051s.

32-bit Processors
BA2x Family Overview

Secure Processors
Geon - Protected Execution

Application Processors
BA25 Adv. App. Processor
BA22 Basic App. Processor

Cache-Enabled Embedded
BA22 Cache-Embedded

Embedded Processors
BA22 Deeply Embedded
BA21 Low Power
BA20 PipelineZero

Processor-Based AMBA® Subsystems
Family Overview
AHB Low-Power
AHB Performance/Low-Power
AXI Custom Performance

AMBA Bus Infrastructure Cores
See Peripherals Cores >

Efficiently compress media or data with these high-performance hardware codecs. See the video and image compression Family Page for a media compression overview.

 H.264 Video Decoders
Low Latency Constrained
  Baseline Profile

Low-Power Constrained
  Baseline Profile

 H.265 HEVC Decoders
Main Profile

Companion Cores
Image Processing
WDR/HDR
CAMFE Camera Processor
Network Stacks
40G UDPIP Stack
1G/10G UDPIP Stack
• Hardware RTP Stack
  – for H.264
  – for JPEG
IEEE 802.1AS Time Sync.
   Stack

IEEE 802.1Qav & 802.1Qbv
   Stack

• MPEG Transport Stream
  Mux

JPEG Still & Motion
Encoders
Baseline
Extended
Ultra-Fast
Decoders
Baseline
Extended
Ultra-fast

JPEG-LS
Lossless & Near-Lossless
Encoder
Decoder

Lossless Data Compression
GZIP Compressor
GUNZIP Decompressor
GZIP Reference Designs
    • for Intel FPGAs
    • for Xiinx FPGAs

Easily integrate memories, peripherals, and hardware networking stacks into SoCs.

Display Controllers
TFT LCD

Device Controllers
smart card reader

Flash Controllers
Parallel Flash
Parallel Flash for AHB
Universal Serial NOR/NAND
   Flash for AHB

Legacy Peripherals
DMA Controllers
8237, 82380
UARTs
16450S, 16550S, 16750S
Timer/Counter
8254

Quickly complete the standard parts of your SoC with these memory and peripheral controllers, interfaces, and interconnect cores.

SPI
Octal/Quad/Dual/Single SPI
XIP & DMA for AHB
XIP for AHB
Quad SPI
XIP & DMA for AHB
XIP for AHB
XIP for AXI
Master/Slave
Single SPI
Master/Slave
Bridges
SPI to AHB-Lite

I2C & SMBUS
Master/Slave Controller
Master/Slave VIP
I2C
Master  • Slave

These encryption cores make it easy to build security into a variety of systems.

AES
AES, programmable
  CCM, GCM, XTS
Key Expander

DES
DES single
DES triple

Hash Functions
SHA-3 (Keccak)
SHA-256
SHA-1
MD5

CAST Blog Posts for IOT Tag

  • Using GZIP Data Compression to Reduce Power Consumption in IoT Devices

    Using GZIP Data Compression to Reduce Power Consumption in IoT Devices
    Designers can significantly reduce power usage in an IoT device by using GZIP/GUNZIP data compression IP cores within the system.
  • IoT Phase 2: Design Matters

    IoT Phase 2: Design Matters
    The second wave of the Internet of Things is starting, and new devices must be distinguished by delivering desired functions with extremely little power consumption. Clever design—and choosing the right IP—will be required to achieve this.
  • White Paper — Data Compression for Low Energy IoT Connectivity

    White Paper — Data Compression for Low Energy IoT Connectivity
    Most IoT devices use considerable energyfor  wireless data transmission.Using losslaess data compression within the device archtiecture can help, as shown here through examples using the GZIP IP core available from CAST.
  • White Paper — Firmware Compression for Lower Energy and Faster Boot in IoT Devices

    White Paper — Firmware Compression for Lower Energy and Faster Boot in IoT Devices
    IoT devices that employ code shadowing can enjoy significant energy savings by using efficient hardware code compression. The compressed application code needs a smaller NVM device for long-term storage, and the system consumes significantly less time and energy reading the compressed code from the system's non-volatile memory (NVM) into the on-chip SRAM. The code can be decompressed in-line (as it is read out of the NVM), at the cost of practically negligible additional delay or energy usage.

 

tw    fbk    li    li    li
Top of Page